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Abstract-The transient behavior and heat transfer for the melting of ice in porous media within a 
rectangular enclosure is simulated by the numerical method SIMPLE C. The solid-liquid interface becomes 
irregular due to the presence of porous media. The mushy zone of the finite thickness is taken into 
consideration in this investigation. The entire flow field is modeled by the non-Darcy model which 
incorporates effects of convection, inertia and boundary friction. Based upon the numerical results, the non- 
linear factor due to temperature-dependent density of the molten liquid could be a significant contributor to 
temperature field, flow field, position of interface, and capacity of heat transfer. A temperature exists on 
the hot side where minimum heat transfer takes place. As the Darcy number gets larger, the heat transfer 
gets better, the rate of melting of ice goes faster, and the interface distorts more. As time goes on, heat 
transfer on the hot side worsens and that on the cold side gets better. Copyright c 1996 Elsevier Science Ltd. 

INTRODUCTION 

Solid/liquid phase change in porous media occurs 
widely in natural phenomena and industrial appli- 
cation, such as melting of soils, artificial freezing of 
ground for mining and construction purposes, freez- 
ing of soil around the heat exchanger coils of a ground 
based pump, thermal energy storage, freeze treatment 
of sewage, preparation of a semi-conductor, casting 
and welding of a manufacturing process, and so on. 
Therefore a better understanding about this phenom- 
enon is necessary. 

Early research in heat transfer in porous media with 
a phase change of fluid was dedicated to evaporation 
or condensation [l, 21. Besides, the assumption was 
widely made, that heat transfer is governed by con- 
duction only. Kazmierczak and Poulikakos [3], using 
simple boundary layer analysis, investigated natural 
convection in the melting liquid phase from a flat plate 
embedded in a porous medium and concluded that 
the convection of a liquid being molten played an 
important role. 

When dealing with flow passing through porous 
media, early researchers assumed the applicability of 
Darcy law mostly for convenience, such as Kaz- 
mierczak and Poulikakos [3] and Zhang [4]. However, 
Darcy law is only applicable to low porosity and low 
speed fluid flow, since inertia and viscous effects are 
neglected herein. Some later researchers made further 
steps in analysis, such as Chen and Ho [S] by adding 
an inertia term ; Tong and Subramanian [6] by adding 
a viscous term satisfying the no-slip condition; and 
Vafai and Tien [7] by adding boundary and inertia 
effects. Hence, non-Darcy law was developed which 
incorporates convection, inertia, boundary friction, 

thermal dispersion, and wall channelling effects for 
the appropriate description of fluid flow in a porous 
media. Related literature applying non-Darcy law for 
natural convection to a rectangular enclosure model 
where porous media and flow exist was partly 
accomplished by Beckermann et al. [8]. Later on, 
Beckermann and Viskanta [9] developed a general 
model for solid/liquid change with natural convection 
in the melting region of a porous media by using the 
non-Darcy law. 

From the equation for density and temperature 
variation, it is found that the natural convection of 
water in low temperature is different from general fluid 
flow. This is due to the existing non-linear relationship 
between density and temperature in cold water and 
the fact that the maximum water density occurs at 
about 4°C under atmospheric pressure. Therefore, the 
linear Boussinesq equation employed in most of the 
literature regarding cold water is not applicable in the 
investigation of natural convection of cold water. In 
1977, Gebhart and Mollendorf [lo] formulated an 
adequate non-linear density-temperature relationship 
for water at a low temperature. Such an equation was 
used by Zhang [4], Lin and Nansteel [ 111, and so on. 
For steady state cold water which covers maximum 
density, Lin and Nansteel’s [l l] investigation for flow 
structure, temperature distribution, and heat transfer 
capacity, showed two eddies of equivalent strength 
and in an opposite sense would occur if a maximum 
density temperature line appeared in the geometry 
center of a rectangular enclosure. 

As for the thickness of solid/liquid interface, general 
works concerning heat transfer of solid/liquid phase 
change would mostly assume zero thickness, e.g. 
Zhang [4]. But with the presence of porous media, 
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NOMENCLATURE 

B residual mass X horizontal coordinate [m] 
( specific heat [J kgg’ K -‘I X 

inertia coefficient, 1.75 * 6m3i2/Ji% 
dimensionless horizontal coordinate, 

C X/L 
dm mean particle size [m] ?I vertical coordinate [m] 
Da Darcy number, K(E) Lm2 Y dimensionless vertical coordinate, y/L. 
I? gravitational acceleration [m ss2] 
Ah latent heat of fusion [J kg-‘] 
H height of cavity [m] Greek symbols 
k,r effective thermal conductivity IX thermal diffusivity [m’ s-‘1 

[w m-’ Km’] fraction liquid in fluid 
K permeability d,,,h3/ 175( 1 - 6)2 [m’] : fraction liquid in volume element 
KR thermal conductivity ratio, kew/k, 8 porosity 
L length of cavity [m] 0 dimensionless temperature, 
LH aspect ratio, H/L CT- TJI(Th - TJ 
NU local Nusselt number Qr dimensionless fusion temperature, 
NU average Nusselt number (Tr- T,)l(T,- T,) 
P pressure m mm’] K permeability ratio, Q&)/K(8) 
P dimensionless pressure, pL2/p,v,cc, 1 9.297173 x 10m6”C-y 
PI. Prandtl number, ~,/a, p dynamic viscosity [N s mm’] 
q 1.894816 V kinematic viscosity [m’ s-‘1 
R maximum density parameter, P density [kg m-‘1 

(Tll- T,)I(Til- Tc) Ph maximum density, 999.972 kg rnA3 
Ra modified Raleigh number, PC mean thermal capacitance [J mm3 K -‘I 

Ph&L3(Ttl - ~CYIP,WI 
; 

dimensionless time, ta,/L’ 
Ste Stefan number, c,( r, - T,)/Ah,, physical quantity 
t time[s] R thermal capacitance ratio, pc/p,c,. 
T temperature [K] or [“Cl 

Tr fusion temperature [“Cl 

T, maximum density temperature, Subscripts 
4.029325”C C cold side 

u x-direction velocity [m s-l] f fusion 
u dimensionless x-direction velocity, h hot side 

U-W, 1 liquid 
L’ y-direction velocity [m ss’] 0 initial 
V dimensionless y-direction velocity, P porous medium 

vL/q ; volume [m’] S solid. 

the interface in the coexisting solid and liquid region linear density-temperature relationship, mushy zone, 
becomes an irregular curve owing to the interaction and transient natural convection applying non-Darcy 
between liquid water and the porous media. If we effect for the melting of ice in porous media within a 
persist in the assumption of zero thickness, we will rectangular enclosure, therefore, we decided to con- 
miss out such physical phenomenon. From Becker- tribute to the study of the transient behavior of the 
mann and Viskanta’s [9] study with glass marbles as melting of ice in porous media. 
the porous media and gallium as the fluid, they find, 
with the presence of porous media, the generation 
of dendrites near the fusion temperature of gallium, 
which makes the solid/liquid interface extremely 
irregular. Finite thickness of the coexisting solid and 
liquid zone, that is, the solid/liquid region of finite 
thickness, is hence considered for within limited tem- 
perature range near fusion temperature. 

Reviewing past researches, the topic of the solid/ 
liquid phase change heat transfer has not yet been 
thoroughly studied. Especially, no work has been 
done with simultaneous considerations for the non- 

THEORETICAL ANALYSIS 

Figure 1 shows us the physical model and coor- 
dinate system for a rectangular enclosure in porous 
media which contains pure solid ice inside before we 
start the numerical operation. x represents the hori- 
zontal coordinate and y the vertical coordinate. H 
and L stand for, respectively, height and width of the 
rectangular enclosure whose top and low surface are 
both maintained adiabatic. At t = 0, the temperature 
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Fig. I, The physical model and coordinate system. 

on the left hand side is suddenly set to some high value 
and that on the right still remains at its initial value. 

For better analysis, some assumptions have been 
made : 

(1) a two dimensional flow field and ice zone ; 
(2) the phase change material and porous media 

reach local thermal equilibrium ; 
(3) constant porosity and iso-orientation of porous 

media ; 
(4) the porous media and ice are immovable (i.e. 

UP = u, = 0) ; 
(5) assumptions for laminar flow, insignificant vis- 

cous heat dissipation and insignificant radiative heat 
transfer ; 

(6) density change is neglected (i.e. p, = p> = pr) 
where phase change occurs ; 

(7) the physical properties of the fluid flow are all 
assumed constant except the non-linear density-tem- 
perature equation in the buoyant term. 

Concerning the density-temperature equation, 
we will follow the one derived by Gebhart and 
Mollendorf [lo] 

Among them, P,,,, = 999.972 kg mm3 (maximum 
density of water), 1 = 9.297173 x 10m6 ‘C-*, T,,, = 
4.029325”C (maximum density temperature of 
water), and q = 1.894816. 

Then, applying the theorem of conservation and 
introducing the dimensionless parameters as below 

(1) 

Since we will treat the entire field, the four equations 
from (3) to (6) each can be used to solve the ice region, 
the mushy or coexisting ice and water region, and 
the water region. Also, when calculating the physical 
properties, the following conditions will be 
implemented into equations (3))(6) for solutions : 
y = 1 and 6 = E for the interface between the water 
and mushy region as well as the water region; 
O<y<landO<6<~forthemushyregion;y=O, 
6 = 0 for the interface between the mushy and water 
region as well as for the ice region. Therefore, bound- 
ary conditions are only required for four sides of rect- 
angular enclosure. The initial and boundary con- 
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Ste = 
Q(TA-Tc) 

Ah,, 
“=fi 

I 

K(E) 
K=- 6=&y, LH=;; 

K(6) (2) 

we obtain the following dimensionless governing 
equations : 

continuity equation 

au av 
Tjjj+$yy=o (3) 

x-momentum equation 

= -,rg+qg+g 

L 

K’PY c. KIi2 
~ 

Da + J&i Fl 
lJ*+v* cl (4) 

y-momentum equation 

+Ra*Pr~[~O-R~*-/O,-R~Y] 

and energy equation 

(5) 

ditions for the dimensionless equations are as follows : 
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initial conditions (at r = 0) 

O=B,=O, u=v=o 

forO<Xdl OgYgLH (7) 

boundary conditions 

Q=l U=V=O forX=O OgYgLH 

O=O U=V=O forX=l O<Y<LH 

Fy=O U=V=O forY=O O<X<l 

-=O U=V=O forY=LH O<X<l. ay 
(8) 

The important parameter in convection problems, 
Nusselt number, indicates the capacity of heat transfer 
in dimensionless form. It can be defined as below : 

dimensionless local Nusselt number, Nu ; 

Nu,,-?K 
ax 

at hot side ; 
X=” 

a0 
Nut = - z x=, at cold side 

dimensionless average Nusselt number, Nu ; 

(9) 

NM,, = L s LH 

Lff 0 
Nu, d Y at the hot side ; 

Nut = i s LH 

LH 0 

Nut dY at the cold side. (10) 

NUMERICAL METHOD 

The numerical method SIMPLE-C, incorporating 
the power-law scheme, developed by Patankar and 
Spalding [I 31 in 1972, and detailed by Patankar [14], 
is used. For quicker convergency, this method was 
modified by Van Doormaal and Raithby [ 121 in 1984. 

The mushy zone is defined as the region with a space 
span of half of the diameter of the particle both to the 
left and right from the position where or, the dimen- 
sionless fusion temperature, is located. The equations 
for the mushy zone will be used for the solutions. 
Points with temperature higher than that of the mushy 
zone will be considered located in the fluid flow region, 
where the fluid flow equations are applicable ; likewise, 
points with temperature lower than that will be con- 
sidered located in the ice region where equations for 
the ice regions are valid. If the values of U, V, P, 0 
calculated after iteration do not meet the convergency 
criteria when compared with those obtained from pre- 
vious iteration, they will again be iterated until con- 
vergency. When convergency comes, the values 
obtained are then the solutions for that particular 

time. We repeat this operation with advancing time 
step until steady state is attained. 

In spacing, we employ constant spacing for the 
entire rectangular space. Before we started the cal- 
culation, we first meshed the geometry in a constant 
spacing for test with grid points of 21 x 21, 33 x 33, 
41x41, 66x33, 99x33, 99x41, 132x33. For an 
arbitrary two among the previous four spacings, at 
least one average Nusselt number difference on the 
hot side is above 5% when time is equal to 30, 90 
and 240 min, respectively; and for the later three of 
spacings, all average Nusselt number differences on 
the hot side are below 5% when time is equal to 30,90 
and 240 min, respectively. Considering the accuracy of 
the solutions and efficient calculation, we hence select 
a constant spacing meshing of 99 x 33. 

The line by line method is first used to transform the 
finite difference equations into three diagonal matrices 
and then the tridiagonal matrix algorithm (TDMA) 
will be applied for the solution. Alternative direction 
implicit procedures (ADI) are employed for iteration 
with the under-relaxation factor considered for sweep 
in four directions : upward, downward, forward and 
backward. 

The convergency criteria for every time step is 
residual mass B is less than IO-’ and the residual 
values for U, V. 0 are 

R = Ca,b@nb+h-a,@,, < 10m4 

where @ could be U, V or 0. 
The convergency criteria for steady state is 

INu,-Nu,I < lo-‘, 

where Nu,,, Nu, represent average Nusselt number for 
the hot and cold sides, respectively. 

RESULTS AND DISCUSSION 

The characteristic length L equals 6.5 cm and tem- 
perature on the cold side Tc is maintained at a con- 
stant of -0.5”C in this paper. Our investigation is 
mainly to discover the influence on the flow field, 
temperature distribution, interface position, and heat 
transfer capacity with respect to maximum density 
parameter R, permeability k (i.e. Darcy number Da), 
and time variable t. We change the maximum density 
parameter, R, by adjusting the hot side temperature 
T,,. The correlation between the two is : as T,, = 12°C 
R = 0.36; Th = 8°C R = 0.53; T,, = 4°C R = 1.01. 
The change of T,, is also accompanied by a change of 
the modified Raleigh number Ra and Stefan number 
Ste. The value ranges of the dimensionless physical 
parameters are: Prandtl number Pr = 11.8; aspect 
ratio LH = 1 ; porosity E = 0.4; Darcy number, Da, 
from 3 x lo-’ to 3 x 10m5 ; modified Raleigh number, 
Ra; from 2.5 x lo6 to 5 x 107; maximum density par- 
ameter, R ; from 0.36 to 1.8 1; and Stefan number Ste ; 
from 0.03 to 0.16. 
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Figures 2 to 4 show the influence to the flow field 
as a result of various hot side temperatures. As time 
increases, the region of flowing liquid water expands, 
i.e. an increase of liquid water from the melting of ice. 
The temperature difference between the hot and cold 
sides varies with respect to change of T,, with which 
the increase rate of the flowing liquid water region 
also varies as time goes on. The maximum and mini- 
mum rates occur when T,, equals 12 and 4°C respec- 
tively. 

Figure 5 explains the time-related change of the 
interface position, defined as the isothermal line of 
fusion temperature of ice for various temperatures on 
the heating side. It is shown that : the interface tends 
to move towards the cold side as time goes on, and to 
shift speeds of the upper and lower parts of the inter- 
face which vary with T,,. For instance, Fig. 5a and b 
illustrates the heating conditions for T,, equal to 12 
and 10°C respectively, which shows that the upper 
part shifts faster than the lower as a result of better 
fusion rate in the upper portion. This is attributed to 
the stronger and clockwise eddy on the left side which 
facilitates direct heat transfer from the hot side to the 
upper part of the interface. Figure 5c-f corresponding 
to T,, equal to 8, 6, 4 and 2°C respectively, shows a 
greater shifting speed on the lower interface as a result 
of better fusion rate in the lower portion. This is 
because the fluid near the interface is influenced by a 
counterclockwise eddy accordingly. 

The variations of local Nusselt numbers of the hot 
and cold sides at different times while T,, is equal to 
12, 8 and 4‘C are shown in Figs 68 respectively. It is 
found that as time increases, the local Nusselt number 
becomes smaller for the hot side and larger for the 
cold side. At T,, = 12°C as indicated in Fig. 6, mini- 
mum heat transfer flux occurs at Y = 1 and maximum 
heat transfer occurs at Y = 0 on hot side. It is ex- 
plained as follows : the density of the fluid near the hot 
side after being heated becomes smaller than the maxi- 
mum density and then moves up and absorbs energy 
gradually. When reaching the top of the hot side, its 
temperature is therefore at its highest which causes 
a low temperature gradient and poor heat transfer flux 
therein. As the clockwise main eddy brings cooler fluid 
near the cold side to the bottom of the hot side, the 
temperature gradient, and hence the heat transfer flux 
increases. Likewise, the maximum heat transfer flux 
occurs at the top of the cold side and the bottom of 
the cold side becomes the minimum, which can be 
explained by the above influence from the clockwise 
main eddy. Figure 7 shows that the difference between 
the maximum and minimum heat transfer on the hot 
side is smaller than that for the case of r,, = 12’C in 
Fig. 6, which is mainly due to the fact that the cooler 
fluid from the cold side fails to reach the hot side as a 
result of two equivalent eddies generated when 
T,, = 8 C (Fig. 3). Figure 8 illustrates that the 
maximum heat transfer flux happens both on the top 
of the hot side and the bottom of the cold side while 
minimum heat transfer flux occurs at the bottom of 

the hot side and top of the cold side. The explanation 
for this is that the counterclockwise and cooler fluid 
flow from the cold side has direct contact with the top 
of the hot side, which enables greater temperature 
difference and thus better heat transfer on the top of 
the hot side ; later once the cooler fluid flow becomes 
warmer and its density larger, it begins to flow down 
to below the hot side where the fluid temperature 
increases and heat transfer capacity decreases. The 
warm flow continues to flow to the bottom of the cold 
side and finally the temperature difference becomes 
bigger and hence the heat transfer is better. 

The influence of the maximum density parameter R 
to flow field at 600 min is seen in Fig. 9. We find as 
R = 0.36, the clockwise eddy on the left is bigger than 
the counterclockwise one on the right; R = 0.53, both 
eddies are equivalent, however with a further increase 
of R, the counterclockwise eddy on the right becomes 
bigger. When R exceeds 1, the one on the left will 
vanish and only one counterclockwise eddy remains, 
which is due to the moving-down of the fluid of greater 
density near the hot side as a result of the fact that the 
maximum density isothermal line (Q = R) shifts out 
of the flow region. 

The influence of the maximum density parameter R 
to the interface position and fusion rate for t = 30, 
120 and 360 min is illustrated in Fig. 10. Figure 10a 
shows the following scenario: as R gets smaller and 
less than 0.53, the interface tends to distort toward 
the cold side as the vertical coordinate increases, which 
means fusion gets faster with respect to the increase 
of the vertical coordinate, because the bigger main 
clockwise eddy transfers the heat of the warm flow 
from the hot side to the upper part of the interface. 
However, as R becomes larger and greater than 0.53. 
the interface tends to distort toward the cold side 
as the vertical coordinate decreases, which represents 
fusion going faster with respect to the decrease of the 
vertical coordinate because the bigger counter- 
clockwise eddy transfers the heat of warm flow from 
the hot side to the lower part of the interface. Figure 
10a and b both share the same tendency. More is 
revealed in Fig. 1Oc as the Darcy number equals 
3 x lo-‘, the interface remains nearly vertical regard- 
less of the value of R, which signifies that under this 
permeability the convection effect is insignificant. i.e. 
heat transfer is only dominated by heat conduction. 

The influence of the hot side temperature T,, to 
average the Nusselt number on the hot side at t = 975 
min is shown in Fig. 11. Nu does not always increase 
with respect to increase of T,,, i.e. a decrease of R. 
There exists a hot side temperature of 8°C for a mini- 
mum heat transfer, which is because under this kind 
of heating condition two equivalent eddies are gen- 
erated in the flow field, and in opposite sense, results 
in indirect heat transfer and thus higher average tem- 
perature and poorer heat transfer for the left eddy. As 
2C d rr, d 8’C. there exists a local maximum heat 
transfer capacity for Nu at 4°C. This happens due to 
the formation of only one counterclockwise eddy at 



2338 W.-J. CHANG and D.-F. YANG 

(a) t=30min 

(c) t= 120min 

(e) t=360min 

(b) t=60min 

(d) t=240min 

(f> t=480min 
Fig. 2. The contours for time dependent streamlines for R = 0.36 (RLI = 5 x IO’, Ste = 0.16, Da = 6 x lo-(‘). 
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(a) t=30min (b) t=60min 

(c) t=120min 

(e) t=360min 

(d) t=240min 

(f) t=480min 
Fig. 3. The contours for time dependent streamlines for R = 0.53 (Ra = 2.5 x lo’, Ste = 0.11, 

Da = 6 x 10m6) 
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(a) t=30min (b) t=60min 

(c) t= 120min (d) t=360min 

(e) t=480min (f) t=720min 

Fig. 4. The contours for time dependent streamlines for R = 1.01 (Ra = 7.5 X 106, Se = 0.06, 
Da = 6 x lo-?. 
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(a) RlO.36 

(c) R:o.53 

(e) Rk.01 

- 

(b) Rx=043 

(d) R=0.70 

(f) R=1.81 
Fig. 5. The variations of the interface positions at various values of time (Da = 6 x 10 -“) 
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Fig. 6. The variations of the local Nusselt number at eight Fig. 7. The variations of the local Nusselt number at eight 
different values of time for R = 0.36, (a) hot side, (b) cold different values of time for R = 0.53, (a) hot side, (b) cold 

side (IIa = 6 x 10m6). side (Da = 6 x 10-6). 
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1.0 

0.8 

0.6 

x 

0.4 

0.2 

0.0 

Nut 

04 
Fig. 8. The variations of the local Nusselt number at eight 
different values of time for R = 1.01, (a) hot side, (b) cold 

side (Da = 6 x 10m6). 

4’C which produces a better convective effect than at 
any other T,,. As T,, > 8°C Nu increases abruptly due 
to the increase of the hot side temperature and hence, 
better convection occurs. 

The Darcy number is an index of permeability, the 
higher the Darcy number is, the better the per- 
meability is. When the fluid can more easily flow 
through a porous media, a better convection could be 
expected. As shown in Fig. 12 with two equivalent 
eddies of opposite senses, these two tend to move 
toward the upper part of the geometry center and 
thus isothermal lines concentrate more here when the 
Darcy number becomes bigger. From Fig. 10, we also 
understand the influence of the Darcy number Da to 
the interface position, and fusion rate at t = 30, 120 
and 360 min. As the Darcy number increases, the 

interface distorts more and the fusion rate becomes 
greater. When R = 0.36 (solid line), the fusion rate in 
the upper part of the interface is always larger than 
that in the lower, due to heat transfer to the upper 
resulting from the presence of a stronger clockwise 
eddy in the left; for R = 0.53 (long dotted line) and 
I = 30 min, the interface changes little with regard to 
the Darcy number as a result of less fluid in the flow 
field and insignificant flow speed. At t = 360 min. the 
interface bends more as the Darcy number gets bigger, 
which is caused by the increase of fluid, significant 
flow speed, and heat transfer carried out through the 
boundary layer. As R = 1.01 (short dotted line) and 
t = 30 min, the change of interface is still insignificant. 
When time goes on to 360 min, the interface. which 
bends more, and greater fusion rate in the lower part 
of interface will be observed as the Darcy number gets 
larger. The above is due to heat transfer to the lower 
part of the interface as a result of the presence of only 
one counterclockwise eddy in the flow. 

Figure 13 shows the change of average Nusselt 
number Nu on the hot side with respect to the Darcy 
number. We conclude from this figure that regardless 
of R (or 7,,), the larger the Darcy number is, the larger 
Nu will be. Furthermore, as R = 0.36, maximum 
difference of NM takes place for three different Darcy 
numbers, however. for R = 0.53, we have a minimum 
difference of Nu. This can be understood in the fol- 
lowing : at R = 0.36, the bigger the Darcy number is, 
the stronger the clockwise eddy is, which drops the 
temperature of the fluid near the hot side and increases 
the temperature gradient; for R = 0.53. the larger the 
Darcy number is, the stronger the two eddies on the 
left and right accordingly (Fig. 12). Since heat transfer 
still takes place indirectly, the flow near the hot side 
remains the higher average temperature. Viewing Fig. 
11, we also find that the larger the Darcy number is. 
the bigger the change of Nu with respect to r,, (or R). 

CONCLUSION 

Summarizing the results of the numerical analysis. 
we have some important conclusions : 

(1) The non-linear factor existing in the density- 
temperature relationship has a great influence on the 
temperature distribution, flow field, interface and heat 
transfer in the melting of ice in a porous media. As R 
becomes smaller and less than 0.5, the isothermal line 
distorts more, the clockwise eddy becomes bigger and 
stronger, and the upper interface bends to the right 
more than the lower part. 

(2) When the Darcy number increases, we can get 
a better heat transfer, greater fusion rate of ice and 
greater distortion of interface. 

(3) Heat transfer does not always increase with an 
increase of the hot side temperature. There exists a 
hot side temperature for minimum heat transfer. 

(4) The heat transfer gets poorer on the hot side 
and better on the cold side as time goes on. 
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(a) R=O.36 (b) R=O.43 

(c) R=O.53 (d) R=O.70 

(e) R=l.Ol (f, R=1.81 

Fig. 9. The contour of the streamlines for different R values (Da = 3 x lo-‘, t = 600 min). 
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Fig. 11. The average Nusselt number at the hot side vs Th at I = 975 min. 
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Fig. 12. The contours for R = 0.53 and t = 600 min streamlines at (a) Da = 3 x 10~ 3, (b) Da = 6 x 10 h, 
(c) Da = 3 x 10 -‘. 
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Fig. 13. The average Nusselt number at the hot side vs dimensionless time for different R and Da values. 
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